ISOMETRIES OF REAL NORMED VECTOR SPACES

KEATON QUINN

If V is a normed vector space then we turn V into a metric space by defining
d(u,v) = |ju — v||. If W another normed vector space we say a function f:V — W
is an isometry if dw (f(u), f(v)) = dv(u,v) for all u,v € V, or equivalently, if
| f(u) = f()||y = llu—wl|,,. If fis linear and an isometry then, we have by
taking v = 0 that | f(u)||;; = ||ull,,- This is actually sufficient, take u = v — w,
then || f(v) — f(w)|ly = | f(v —w)|ly = |lv —wl, so that f is an isometry.

This is not to say that every linear map is an isometry, since for example f(v) =

2v scales length by 2. Nor is this to say that every isometry is linear, take for
example, translations, which give d(u+w,v+w) = [[u + w — (v + w)|| = |jlu —v|| =
d(u,v). However, if our isometry is surjective (and hence bijective since isometries
are always injective) and both our vector spaces real, then we know that f is a
combination of these two maps. That is, f is a linear transformation followed by a
translation: f = A 4+ w for some linear map A and vector w. The original proof
of this fact is due to Mazur and Ulam. The proof as presented here is by Nica in
[Nic12].
Theorem (Mazur—Ulam, 1932). Let V and W be two real normed vector spaces and
suppose [ : V. — W is a surjective isometry, then f is an affine transformation.
That is, there exists a linear map A : V. — W and a vector w € W such that
f=A+w.

Proof. Being affine has an equivalent characterization in terms of preserving line
segments (we will show the useful direction below). So one of our goals is to show

(%) flta+ (1 =1)b) =tf(a)+ (1 —1t)f(b)
for all @ and b. It turns out, preserving line segments will follow from preserving
midpoints of line segments. That is, if we have

f<a;b> _ 10,
a?er

then by replacing a or b with and repeating we get (x) for all t = 2% € [0,1].
Since these points are dense in [0, 1] by continuity of f we get () for all ¢. We do
this now.

Fix two points a,b € V', we show that

; <a+b> _ @)+ 1)

2 2

for every surjective isometry f : X — Y. To do this we define the possible affine
defect f might have as

D(f) =

Hf <a;rb> _ f(a);rf(b)H_
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We want to show D(f) = 0 for all desired f.
Note that we have a uniform bound on the defect:

1 a+b 1 a+b

D(f) < - - + - — (b
1lla+b 1|la+b
22 Y, T2 2 ”

1 1
2lla = blly + 7 lla = bl

1
= 5lla—bly .

It is this bound that helps us get a contradiction to possible positive affine defect.
Define p as reflection about the vector M in W, that is

p:W—=W by pw)=fla)+f(b)—w.
Now, since f is invertible, define R(f) : V — V by R(f) = f~' o po f. Note that

R(f)(a) = b and R(f)(b) = a. Now since f~! is also an isometry, we can compute
the affine defect of R(f):

D(R(f)) = R(f)(a;b> _ R+ RHW V

) ()
e,
_ f(a)—f(b)_f(a;b> ‘f<a;b>‘lw

_ @+ ) 2f<a+b>H
w

2 2
=2D(/f)

\%4

Hence, if we iterate this process, we get D(R"™(f)) = 2"D(f). For large enough n
this violates our uniform bound. Thus D(f) = 0. Note that is reasoning works for
any two a,b € V. We will use this to show that f is affine.

Now, we wish to show f is affine, that is f = A + w for some vector w € W. A
quick evaluation at 0 gives w = f(0). So, it suffices to show f — f(0) is linear. Call
this function A. We compute for ¢ € [0, 1],

Atv) = f(tv+ (1 —t) - 0) — £(0)
=tf(v)+ (1 —1)f(0) — f(0)
=tf(v) —tf(0)
= tA(v).

We will get the remaining ¢ in a second.
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Using this, a computations gives

3A0+0) =450+ 50) =7 (504 3u) - 1)
1 1 1 1
= 25+ 35~ 35(0) - 370
1 1

= §A(U) + §A(u)»
so A is additive and we just need it homogenous now. To this end we see
0=A0)=A(wv—v)=A(w)+ A(—v) = A(-v)=—-A(v).

Thus, we’ve reduced this to showing A(Av) = AA(v) for A > 1. Since A is additive,
we have from induction that A(kv) = kA(v) for positive integers. For a general
A > 1 decompose it as A = | A]| + (\), then finally,

A(M) = A([Mv+ (A)v) = A([A]v) + A((A) v) = [A]A(v) + (A) A(v) = AA(v),
as desired. 0

So, if f is a bijective isometry between two real normed vector spaces it is affine:
f=A+ f(0). If f happens to send the origin to the origin then it is linear and in
particular an isomorphism. Moreover, since translating by f(0) is an isometry, we
see that d(Au, Av) = d(f(u), f(v)) = d(u,v) and so A is a linear isometry.

That the vector spaces are real is necessary as is the surjectivity. Take complex
conjugation from C — C. This is an isometry (|Z—w| = |z—w|) and is surjective, but
it is not complex linear. For surjectivity, take f : R — (R?, ||-||) by f(z) = (=, |2]);
this is an isometry but not real linear.

Denote by Isompget (V') the isometry group of V consisting of all surjective isome-
tries V' — V. Similarly, let Isomvect (V') be the invertible linear isometry of V. The
Mazur-Ulam theorem tells us we have a bijective correspondence between the sets

Isompget (V) = Isomyect (V) X V' by  f < (4,a)
However, since the composition is given by
(Aya) - (B,b) <> A(B+b)+a=AB+ (Ab+a) <> (AB,Ab+a)

we see the multiplication on Isompet (V) is not just components wise, but uses the
homomorphism ¢ : Isomvyect (V) — Aut(V) by ¢(A) = A. So as groups we have
the semi-direct product

Isompet (V) = Isomyect (V) x V.
To specialize to R™ with norm given by the dot product we have LIsom(R"™) =
O(n) so that
Isompget (R™) = O(n) x R™.
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