ISOMETRIES OF REAL NORMED VECTOR SPACES

KEATON QUINN

If V is a normed vector space then we turn V into a metric space by defining $d(u, v)=\|u-v\|$. If W another normed vector space we say a function $f: V \rightarrow W$ is an isometry if $d_{W}(f(u), f(v))=d_{V}(u, v)$ for all $u, v \in V$, or equivalently, if $\|f(u)-f(v)\|_{W}=\|u-v\|_{V}$. If f is linear and an isometry then, we have by taking $v=0$ that $\|f(u)\|_{W}=\|u\|_{V}$. This is actually sufficient, take $u=v-w$, then $\|f(v)-f(w)\|_{W}=\|f(v-w)\|_{W}=\|v-w\|_{V}$ so that f is an isometry.

This is not to say that every linear map is an isometry, since for example $f(v)=$ $2 v$ scales length by 2 . Nor is this to say that every isometry is linear, take for example, translations, which give $d(u+w, v+w)=\|u+w-(v+w)\|=\|u-v\|=$ $d(u, v)$. However, if our isometry is surjective (and hence bijective since isometries are always injective) and both our vector spaces real, then we know that f is a combination of these two maps. That is, f is a linear transformation followed by a translation: $f=A+w$ for some linear map A and vector w. The original proof of this fact is due to Mazur and Ulam. The proof as presented here is by Nica in [Nic12].
Theorem (Mazur-Ulam, 1932). Let V and W be two real normed vector spaces and suppose $f: V \rightarrow W$ is a surjective isometry, then f is an affine transformation. That is, there exists a linear map $A: V \rightarrow W$ and a vector $w \in W$ such that $f=A+w$.
Proof. Being affine has an equivalent characterization in terms of preserving line segments (we will show the useful direction below). So one of our goals is to show

$$
\begin{equation*}
f(t a+(1-t) b)=t f(a)+(1-t) f(b) \tag{*}
\end{equation*}
$$

for all a and b. It turns out, preserving line segments will follow from preserving midpoints of line segments. That is, if we have

$$
f\left(\frac{a+b}{2}\right)=\frac{f(a)+f(b)}{2}
$$

then by replacing a or b with $\frac{a+b}{2}$ and repeating we get $(*)$ for all $t=\frac{k}{2^{n}} \in[0,1]$. Since these points are dense in $[0,1]$ by continuity of f we get $(*)$ for all t. We do this now.

Fix two points $a, b \in V$, we show that

$$
f\left(\frac{a+b}{2}\right)=\frac{f(a)+f(b)}{2}
$$

for every surjective isometry $f: X \rightarrow Y$. To do this we define the possible affine defect f might have as

$$
D(f)=\left\|f\left(\frac{a+b}{2}\right)-\frac{f(a)+f(b)}{2}\right\|
$$

Last Revised: December 21, 2018.

We want to show $D(f)=0$ for all desired f.
Note that we have a uniform bound on the defect:

$$
\begin{aligned}
D(f) & \leq \frac{1}{2}\left\|f\left(\frac{a+b}{2}\right)-f(a)\right\|_{W}+\frac{1}{2}\left\|f\left(\frac{a+b}{2}\right)-f(b)\right\|_{W} \\
& =\frac{1}{2}\left\|\frac{a+b}{2}-a\right\|_{V}+\frac{1}{2}\left\|\frac{a+b}{2}-b\right\|_{V} \\
& =\frac{1}{4}\|a-b\|_{V}+\frac{1}{4}\|a-b\|_{V} \\
& =\frac{1}{2}\|a-b\|_{V} .
\end{aligned}
$$

It is this bound that helps us get a contradiction to possible positive affine defect. Define ρ as reflection about the vector $\frac{f(a)+f(b)}{2}$ in W, that is

$$
\rho: W \rightarrow W \quad \text { by } \quad \rho(w)=f(a)+f(b)-w
$$

Now, since f is invertible, define $R(f): V \rightarrow V$ by $R(f)=f^{-1} \circ \rho \circ f$. Note that $R(f)(a)=b$ and $R(f)(b)=a$. Now since f^{-1} is also an isometry, we can compute the affine defect of $R(f)$:

$$
\begin{aligned}
D(R(f)) & =\left\|R(f)\left(\frac{a+b}{2}\right)-\frac{R(f)(a)+R(f)(b)}{2}\right\|_{V} \\
& =\left\|f^{-1}\left(\rho\left(f\left(\frac{a+b}{2}\right)\right)\right)-f^{-1}\left(f\left(\frac{a+b}{2}\right)\right)\right\|_{V} \\
& =\left\|\rho\left(f\left(\frac{a+b}{2}\right)\right)-f\left(\frac{a+b}{2}\right)\right\|_{W} \\
& =\left\|f(a)-f(b)-f\left(\frac{a+b}{2}\right)-f\left(\frac{a+b}{2}\right)\right\|_{W} \\
& =\left\|2 \frac{f(a)+f(b)}{2}-2 f\left(\frac{a+b}{2}\right)\right\|_{W} \\
& =2 D(f)
\end{aligned}
$$

Hence, if we iterate this process, we get $D\left(R^{n}(f)\right)=2^{n} D(f)$. For large enough n this violates our uniform bound. Thus $D(f)=0$. Note that is reasoning works for any two $a, b \in V$. We will use this to show that f is affine.

Now, we wish to show f is affine, that is $f=A+w$ for some vector $w \in W$. A quick evaluation at 0 gives $w=f(0)$. So, it suffices to show $f-f(0)$ is linear. Call this function A. We compute for $t \in[0,1]$,

$$
\begin{aligned}
A(t v) & =f(t v+(1-t) \cdot 0)-f(0) \\
& =t f(v)+(1-t) f(0)-f(0) \\
& =t f(v)-t f(0) \\
& =t A(v)
\end{aligned}
$$

We will get the remaining t in a second.

Using this, a computations gives

$$
\begin{aligned}
\frac{1}{2} A(v+u)=A\left(\frac{1}{2} v+\frac{1}{2} u\right) & =f\left(\frac{1}{2} v+\frac{1}{2} u\right)-f(0) \\
& =\frac{1}{2} f(v)+\frac{1}{2} f(u)-\frac{1}{2} f(0)-\frac{1}{2} f(0) \\
& =\frac{1}{2} A(v)+\frac{1}{2} A(u)
\end{aligned}
$$

so A is additive and we just need it homogenous now. To this end we see

$$
0=A(0)=A(v-v)=A(v)+A(-v) \quad \Longrightarrow \quad A(-v)=-A(v)
$$

Thus, we've reduced this to showing $A(\lambda v)=\lambda A(v)$ for $\lambda>1$. Since A is additive, we have from induction that $A(k v)=k A(v)$ for positive integers. For a general $\lambda>1$ decompose it as $\lambda=\lfloor\lambda\rfloor+\langle\lambda\rangle$, then finally,

$$
A(\lambda v)=A(\lfloor\lambda\rfloor v+\langle\lambda\rangle v)=A(\lfloor\lambda\rfloor v)+A(\langle\lambda\rangle v)=\lfloor\lambda\rfloor A(v)+\langle\lambda\rangle A(v)=\lambda A(v)
$$

as desired.
So, if f is a bijective isometry between two real normed vector spaces it is affine: $f=A+f(0)$. If f happens to send the origin to the origin then it is linear and in particular an isomorphism. Moreover, since translating by $f(0)$ is an isometry, we see that $d(A u, A v)=d(f(u), f(v))=d(u, v)$ and so A is a linear isometry.

That the vector spaces are real is necessary as is the surjectivity. Take complex conjugation from $\mathbb{C} \rightarrow \mathbb{C}$. This is an isometry $(|\bar{z}-\bar{w}|=|z-w|)$ and is surjective, but it is not complex linear. For surjectivity, take $f: \mathbb{R} \rightarrow\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$ by $f(x)=(x,|x|)$; this is an isometry but not real linear.

Denote by $\operatorname{Isom}_{\text {Met }}(V)$ the isometry group of V consisting of all surjective isometries $V \rightarrow V$. Similarly, let $\operatorname{Isom}_{\text {Vect }}(V)$ be the invertible linear isometry of V. The Mazur-Ulam theorem tells us we have a bijective correspondence between the sets

$$
\operatorname{Isom}_{\text {Met }}(V)=\operatorname{Isom}_{\text {Vect }}(V) \times V \quad \text { by } \quad f \leftrightarrow(A, a)
$$

However, since the composition is given by

$$
(A, a) \cdot(B, b) \leftrightarrow A(B+b)+a=A B+(A b+a) \leftrightarrow(A B, A b+a)
$$

we see the multiplication on $\operatorname{Isom}_{\text {Met }}(V)$ is not just components wise, but uses the homomorphism $\varphi: \operatorname{Isom}_{\text {Vect }}(V) \rightarrow \operatorname{Aut}(V)$ by $\varphi(A)=A$. So as groups we have the semi-direct product

$$
\operatorname{Isom}_{\text {Met }}(V)=\operatorname{Isom}_{\text {Vect }}(V) \ltimes V
$$

To specialize to \mathbb{R}^{n} with norm given by the dot product we have LIsom $\left(\mathbb{R}^{n}\right)=$ $O(n)$ so that

$$
\operatorname{Isom}_{\text {Met }}\left(\mathbb{R}^{n}\right)=O(n) \ltimes \mathbb{R}^{n}
$$

References

[Nic12] Bogdan Nica. The Mazur-Ulam theorem. Expo. Math., 30(4):397-398, 2012.

