
ISOMETRIES OF REAL NORMED VECTOR SPACES

KEATON QUINN

If V is a normed vector space then we turn V into a metric space by defining
d(u, v) = ‖u− v‖. If W another normed vector space we say a function f : V →W
is an isometry if dW (f(u), f(v)) = dV (u, v) for all u, v ∈ V , or equivalently, if
‖f(u)− f(v)‖W = ‖u− v‖V . If f is linear and an isometry then, we have by
taking v = 0 that ‖f(u)‖W = ‖u‖V . This is actually sufficient, take u = v − w,
then ‖f(v)− f(w)‖W = ‖f(v − w)‖W = ‖v − w‖V so that f is an isometry.

This is not to say that every linear map is an isometry, since for example f(v) =
2v scales length by 2. Nor is this to say that every isometry is linear, take for
example, translations, which give d(u+w, v+w) = ‖u+ w − (v + w)‖ = ‖u− v‖ =
d(u, v). However, if our isometry is surjective (and hence bijective since isometries
are always injective) and both our vector spaces real, then we know that f is a
combination of these two maps. That is, f is a linear transformation followed by a
translation: f = A + w for some linear map A and vector w. The original proof
of this fact is due to Mazur and Ulam. The proof as presented here is by Nica in
[Nic12].

Theorem (Mazur–Ulam, 1932). Let V and W be two real normed vector spaces and
suppose f : V → W is a surjective isometry, then f is an affine transformation.
That is, there exists a linear map A : V → W and a vector w ∈ W such that
f = A+ w.

Proof. Being affine has an equivalent characterization in terms of preserving line
segments (we will show the useful direction below). So one of our goals is to show

(∗) f(ta+ (1− t)b) = tf(a) + (1− t)f(b)

for all a and b. It turns out, preserving line segments will follow from preserving
midpoints of line segments. That is, if we have

f

(
a+ b

2

)
=
f(a) + f(b)

2
,

then by replacing a or b with a+b
2 and repeating we get (∗) for all t = k

2n ∈ [0, 1].
Since these points are dense in [0, 1] by continuity of f we get (∗) for all t. We do
this now.

Fix two points a, b ∈ V , we show that

f

(
a+ b

2

)
=
f(a) + f(b)

2

for every surjective isometry f : X → Y . To do this we define the possible affine
defect f might have as

D(f) =

∥∥∥∥f (a+ b

2

)
− f(a) + f(b)

2

∥∥∥∥ .
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We want to show D(f) = 0 for all desired f .
Note that we have a uniform bound on the defect:

D(f) ≤ 1

2

∥∥∥∥f (a+ b

2

)
− f(a)

∥∥∥∥
W

+
1

2

∥∥∥∥f (a+ b

2

)
− f(b)

∥∥∥∥
W

=
1

2

∥∥∥∥a+ b

2
− a

∥∥∥∥
V

+
1

2

∥∥∥∥a+ b

2
− b

∥∥∥∥
V

=
1

4
‖a− b‖V +

1

4
‖a− b‖V

=
1

2
‖a− b‖V .

It is this bound that helps us get a contradiction to possible positive affine defect.

Define ρ as reflection about the vector f(a)+f(b)
2 in W , that is

ρ : W →W by ρ(w) = f(a) + f(b)− w.

Now, since f is invertible, define R(f) : V → V by R(f) = f−1 ◦ ρ ◦ f . Note that
R(f)(a) = b and R(f)(b) = a. Now since f−1 is also an isometry, we can compute
the affine defect of R(f):

D(R(f)) =

∥∥∥∥R(f)

(
a+ b

2

)
− R(f)(a) +R(f)(b)

2

∥∥∥∥
V

=

∥∥∥∥f−1 (ρ(f (a+ b

2

)))
− f−1

(
f

(
a+ b

2

))∥∥∥∥
V

=

∥∥∥∥ρ(f (a+ b

2

))
− f

(
a+ b

2

)∥∥∥∥
W

=

∥∥∥∥f(a)− f(b)− f
(
a+ b

2

)
− f

(
a+ b

2

)∥∥∥∥
W

=

∥∥∥∥2
f(a) + f(b)

2
− 2f

(
a+ b

2

)∥∥∥∥
W

= 2D(f)

Hence, if we iterate this process, we get D(Rn(f)) = 2nD(f). For large enough n
this violates our uniform bound. Thus D(f) = 0. Note that is reasoning works for
any two a, b ∈ V . We will use this to show that f is affine.

Now, we wish to show f is affine, that is f = A+ w for some vector w ∈ W . A
quick evaluation at 0 gives w = f(0). So, it suffices to show f − f(0) is linear. Call
this function A. We compute for t ∈ [0, 1],

A(tv) = f(tv + (1− t) · 0)− f(0)

= tf(v) + (1− t)f(0)− f(0)

= tf(v)− tf(0)

= tA(v).

We will get the remaining t in a second.
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Using this, a computations gives

1

2
A(v + u) = A

(
1

2
v +

1

2
u

)
= f

(
1

2
v +

1

2
u

)
− f(0)

=
1

2
f(v) +

1

2
f(u)− 1

2
f(0)− 1

2
f(0)

=
1

2
A(v) +

1

2
A(u),

so A is additive and we just need it homogenous now. To this end we see

0 = A(0) = A(v − v) = A(v) +A(−v) =⇒ A(−v) = −A(v).

Thus, we’ve reduced this to showing A(λv) = λA(v) for λ > 1. Since A is additive,
we have from induction that A(kv) = kA(v) for positive integers. For a general
λ > 1 decompose it as λ = bλc+ 〈λ〉, then finally,

A(λv) = A(bλcv + 〈λ〉 v) = A(bλcv) +A(〈λ〉 v) = bλcA(v) + 〈λ〉A(v) = λA(v),

as desired. �

So, if f is a bijective isometry between two real normed vector spaces it is affine:
f = A+ f(0). If f happens to send the origin to the origin then it is linear and in
particular an isomorphism. Moreover, since translating by f(0) is an isometry, we
see that d(Au,Av) = d(f(u), f(v)) = d(u, v) and so A is a linear isometry.

That the vector spaces are real is necessary as is the surjectivity. Take complex
conjugation from C→ C. This is an isometry (|z̄−w̄| = |z−w|) and is surjective, but
it is not complex linear. For surjectivity, take f : R→ (R2, ‖·‖∞) by f(x) = (x, |x|);
this is an isometry but not real linear.

Denote by IsomMet(V ) the isometry group of V consisting of all surjective isome-
tries V → V . Similarly, let IsomVect(V ) be the invertible linear isometry of V . The
Mazur-Ulam theorem tells us we have a bijective correspondence between the sets

IsomMet(V ) = IsomVect(V )× V by f ↔ (A, a)

However, since the composition is given by

(A, a) · (B, b)↔ A(B + b) + a = AB + (Ab+ a)↔ (AB,Ab+ a)

we see the multiplication on IsomMet(V ) is not just components wise, but uses the
homomorphism ϕ : IsomVect(V ) → Aut(V ) by ϕ(A) = A. So as groups we have
the semi-direct product

IsomMet(V ) = IsomVect(V ) n V.

To specialize to Rn with norm given by the dot product we have LIsom(Rn) =
O(n) so that

IsomMet(Rn) = O(n) nRn.
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